MIT EECS 6.8370/1: Assignment 2:

Convolution and the Bilateral Filter

Due Wednesday September 25 at 9pm

1 Summary

Important: This problem set is longer than the previous two. Reading
the slides carefully can easily save you some headaches!

Image processing functions from the previous pset have been moved to basicImageManipulation. cpp
and Image.cpp.

e brightness, contrast
e luminance, chrominance
e rgb2yuv, yuv2rgh

e gamma encoding, quantization

2 Smart Accessor

When resampling images or performing neighborhood operations, we might end
up accessing a pixel at x,y coordinates that are outside the image. To handle
such cases gracefully, it is good practice to write accessors that take x,y as
inputs and check them against the bounds of the image before retrieving a value.

Multiple options are possible when a pixel is requested outside the bounds;
but the most common are to return a black pixel or the value of the closest valid
pixel (i.e., of the closest edge). For the latter, just clamp the pixel coordinates
to [0..height-1] and [0..width-1] and perform the lookup there.

Black padding (a.k.a. zero-padding) is more appropriate for applications such
as scale and rotation (which we’ll see in the next assignment) whereas edge-pixel
padding generally looks better for convolution.

1 Implement float Image::smartAccessor(int x, int y, int z,
bool clamp=false) const in Image.cpp. The boolean clamp allows
you to switch between clamping the coordinates and returning a black
pixel.

3 Blurring

In the following problems, you will implement several functions in which you
will convolve an image with a kernel. This will require that you index out of
the bounds of the image. Handle these boundary effects with the smart accessor
from Section 2. Also, process each of the three color channels independently.

We have provided you with a function Image impulseImg(int k) that gen-
erates a k x k x 1 grayscale image that is black everywhere except for one pixel
in the center that is completely white. If you convolve a kernel with this image,
you should get a copy of the kernel in the center of the image. An example of
this can be seen in in a2 main.cpp. It can also be useful to have simple images,
such as an all white Image e.g., Image: :set_color(1.0, 1.0,1.0).

3.1 Box blur

2.a Implement the box filter Image boxBlur(const Image &im, int k,
bool clamp=true) in filtering.cpp. Each pixel of the output is
the average of its k£ x k neighbors in the input image, where k is an
integer. Make sure the average is centered. We will only test you on

odd k (that is the center of the filter is [£51, E=1]).

2.b Can you think of ways to make the Box Blur filter computationally
more efficient? (Answer in the submission form)

(a) Original Image (b) Box Blurred Image

Figure 1: Result of blurring an image with a box width of k=9 and clamp=true

3.2 General kernels

Now, let us implement a more general convolution function that uses an arbitary
kernel. From now on, we’ll perform this using the Filter class. This class
contains a buffer of floats that represent the filtering kernel, together with its
spatial footprint.

To create a filter use the constructor Filter (const vector<float> &fData,
int fWidth, int fHeight). This takes in a row-major vector containing the

values of the kernel (just like in the Image class), and the width and height of
the kernel respectively (to avoid alignment and coordinate round-off issues, we’ll
use odd width and height). See a2 main.cpp for an example.

3.a Implement the function Image convolve(const Image &im, bool
clamp=true) in the Filter class inside filtering.cpp. This func-
tion should compute the convolution of an input image by its kernel.
Make sure the convolution is centered. Note that the kernels are not
flipped ahead of time. You may find the original format of convolution
helpful, i.e., (I ® g)(x) = [, I(z')g(x — 2")da’. Tip: To access the
(x,y) location in a kernel from within the class type operator() (x,
¥ -

3.b Implement the box filter using the Convolve method of the Filter
class in Image boxBlur filterClass(const Image &im, const int
&k, bool clamp=true). Check that you get the same answer as be-
fore with boxBlur.

Pay attention to indexing, (0,0) denotes the upper left corner of the Image,
but for our kernels we want the center to be in the middle. This means you might
need to shift indices by half the kernel size. Test your function with impulseImg,
a constant image and real images of your choice.

3.3 Gradients

Image gradients measure the variation in intensity between neighboring pixels.
We estimate gradients at each of pixel in the image using finite differences. Since
this operation is identical regardless of the spatial location, we can write it as a
convolution. A kernel often used to estimate the gradient is the Sobel kernel.
Here are their weights® for the horizontal and vertical components of the gradient
are respectively:

-1 0 1 -1 -2 -1
-2 0 2| and 0 0 0
-1 0 1 1 2 1

The gradient magnitude is defined as the square root of the sum of the
squares of the two components? :

oI > |orI|?
v =| 5| +|5] - 0

ay

INote that the Sobel kernel is not scaled so that the output keeps the same range as the
input, i.e., [0,1]. For visualizing image gradients, e.g., filtered results using a horizontal Sobel
kernel as in Fig. 2(b), you might want to rescale the convolution output to [0,1] considering
the possible output range convolved by this filter ([—4,4] for the Sobel filter).

2No need to rescale it to [0, 1], just keep it as the original range.

(b) Image Filtered Using a Horizontal Sobel Kernel (rescaled to [0, 1])

(¢) Gradient Magnitude of the Image (not scaled)

Figure 2: Result of filtering with a horizontal Sobel kernel and computing the
gradient magnitude.

4.a Write a function Image gradientMagnitude(const Image &im, bool
clamp=true) that uses the Sobel kernel to compute the gradient mag-
nitude from the horizontal and vertical components of the gradient of
an image.

4.b What kind of image structure does the gradient reveal? Can you
imagine an application that would leverage this information? (Answer
in the submission form)

3.4 Gaussian Filtering

The Gaussian filter is ubiquitous in image processing. It is a key building block
of many algorithms. We’ll start by implementing a one-dimensional version of
the Gaussian filter, then the 2D extension. The mathematical expression for a
continuous normalized 1D Gaussian is:

1) = e ())

. 1 . . .
Notice that el the normalization factor.

In practice, we will not care about this exact normalization factor since we
are working with truncated and discrete Gaussians. Instead, we’ll make sure our
discrete filter is normalized, i.e.,its weights sum to one.

3.4.1 1D Horizontal Gaussian filtering

5.a Implement vector<float> gaussiDFilterValues(float sigma,
float truncate) that returns the kernel values of a 1 dimensional
Gaussian of standard deviation sigma. Gaussians have infinite support
(they accept any x from —oo to 00), but their energy falls off so rapidly
that you can truncate them at truncate times the standard deviation
sigma. Make sure that your truncated kernel is normalized to sum
to 1 and it is centered, where both sides of the Gaussian should be
summed. Your kernel’s output length should be 1+2*ceil(sigma *
truncate).

5.b Use the returned vector from gaussiDFilterValues to generate a
1D horizontal Gaussian kernel using the Filter class. Create and use
this Filter to blur an image horizontally in
Image gaussianBlur_horizontal(const Image &im, float sigma,
float truncate=3.0, bool clamp=true)

5.c What is the effect on the output of varying sigma? (Answer in the
form)

5.d How does truncate impact the computational cost? (Answer in the
form)

3.4.2 2D Gaussian Filtering

Let us now extend our skinny 1D Gaussian to a the full-blown 2D version?, e.g.,

Z2a) "

202

F(,) ox exp (—

6.a Implement a function vector<float> gauss2DFilterValues(float
sigma, float truncate) that returns a full 2D rotationally sym-
metric Gaussian kernel. The kernel should have standard deviation
sigma corresponding to a size of 1+2*ceil(sigma * truncate) X
1+2*ceil(sigma * truncate) pixels.

6.b Implement Image gaussianBlur_2D(const Image &im,
float sigma, float truncate=3.0, bool clamp=true) that uses
the kernel from gauss2DFilterValues to filter an image.

6.c How does the output differ qualitatively from the BoxBlur filter?
(Answer in the form)

3.4.3 Separable 2D Gaussian Filtering

Filtering our images with a 2D Gaussian kernel gives us a nice blur effect, but it
is computationally costly. Fortunately we can exploit the rotational symmetry
of the Gaussian kernel, and make the 2D convolution almost as fast as its 1D
counterpart.

7 Implement separable Gaussian filtering in
Image gaussianBlur_separable(const Image &im, float sigma,
float truncate=3.0, bool clamp=true), using a 1D horizontal
Gaussian filter followed by a 1D vertical one.

Verify that you get the same result with the full 2D filtering as with the
separable Gaussian filtering. You can compare the running time of your two
implementations following the example in the starter code in a2 main. cpp.

3Similar to the 1D case, oc means “proportional to” considering a normalization factor,
which should be determined after truncation and discretization.

(a) Image Filtered Using a Horizontal Gaussian (b) Image Filtered Using a 2D Gaussian Kernel
Kernel

Figure 3: Result of blurring an image with a horizontal and 2D Gaussian kernel
for sigma = 3.0, truncate=3.0, clamp=true

3.5 Sharpening

8.a Implement Image unsharpMask(const Image &im, float sigma,
float truncate=3.0, float strength=1.0, bool clamp=true) to
sharpen an image. Use a Gaussian of standard deviation sigma to
extract a lowpassed version of the image. Subtract that lowpassed
version from the original image to produce a highpassed version of
the image and then add the highpassed version back to it strength
times, that is

Isparpen = I + strength x (I — I ® g).

8.b What is the influence of the strength parameter? How about sigma?
How would you set sigma to emphasize very small-scale details? (An-
swer in the form)

4 Denoising using Bilateral Filtering

The Bilateral filter is defined as:
1
Tousl@,9) = 3 Glle = o,y = y/l,op) x G(IT(,9) = I3/l om) % 1’))
x/7y/

with Z =Y G(lz -2,y —y],00) x G(|I(z,y) — I(z".y/),or)

1ot
Y

where [is the input image, Z is a normalization factor and G is a Gaussian
kernel. The notation G([z — 2’,y — y'],op) is shorthand for G(x — 2’,0p) %

G(y — y',op). The bilateral filter is very similar to a convolution, but the
“kernel” varies spatially and depends on the color difference between a pixel and
its neighbors. The different standard deviations trade-off the spatial (domain),
op, and color differences (range), og. It is important to note that unlike other
kernels, the normalization here depends on the pixel values and cannot be
computed ahead of time. The range Gaussian should be computed using the 3D
Euclidean distance in RGB, that is ||I(x,y) — I(2’,)| above is a shorthand for
Vo I(z,y,c) — I(z',y,c))? (loop over three color channels).

Warning: Because this is not a straightforward convolution, you will not be
able to use the Filter class implementation for this part. The normalization
process should proceed only once, that is ignoring it for each individual Gaussian
kernels but applying it at the last step for all three color channels.

9.a Implement Image bilateral(const Image &im,
float sigmaRange=0.1, float sigmaDomain=1.0,
float truncateDomain=3.0, bool clamp=true), that filters an im-
age using the bilateral filter.

9.b (extra) The Bilateral filter is often called an “edge-preserving” filter,
do you have any intuition why that is? (Answer in the submission)

Try your filter on the provided noisy image lens as well as on simple test
cases (e.g.,an image with a rectangle).

(a) Original Image im (b) RGB Bilateral Filtering (c¢) YUV Bilateral Filtering

Figure 4: Results of denoising using a bilateral filter. RGB Bilateral Filtering:
bilateral(im, 0.1,1.0,3.0,true); YUV Bilateral Filtering: bilaYUV(im,
0.1,1.0,4.0,3.0,true);

4.1 6.8370 only (or 5% Extra Credit): YUV version

We want to avoid chromatic artifacts by filtering chrominance more than lu-
minance. This is because the human visual system is more sensitive to low
frequencies in the chrominance components.

10 Implement Image bilaYUV(const Image &im,
float sigmaRange=0.1, float sigma¥=1.0, float sigmaUV=4.0,
float truncateDomain=3.0, bool clamp=true) that performs bi-
lateral denoising in YUV where the Y channel gets denoised with a
different domain sigma than the U and V channels.

In all cases, make sure you compute the range Gaussian with respect to
the full YUV coordinates, and not just for the channel you are filtering. We
recommend a spatial sigma four times bigger for U and V as for Y.

5 Extra credit

Here are ideas for extensions you could attempt, for 5% each. At most, on the
entire assignment, you can get 10% of extra credit:

e Median filter

e Summed Area tables (i.e.,integral images) for faster box blur
e Different edge padding (e.g., mirroring)

e Fast incremental and separable box filter

e Use a look-up table to accelerate the computation of Gaussian values for
bilateral filtering.

e Edge detection
e Smart sharpen (e.g., based on pixel value or edge detection)

e Difference of Gaussian with stylistic modifications https://hpi.de/fileadmin/
user_upload/fachgebiete/doellner/publications/2012/WK012/winnemoeller-cag2012.
pdf

e Fast convolution using recursive Gaussian filtering:http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.35.5904

e Denoising using NL means http://www.math.ens.fr/culturemath/maths/
mathapli/imagerie-Morel/Buades-Coll-Morel-movies.pdf

e Correcting for dark value bias in denoising (denoised images tend to be
too bright because the negative component of noise is missing)

https://hpi.de/fileadmin/user_upload/fachgebiete/doellner/publications/2012/WKO12/winnemoeller-cag2012.pdf
https://hpi.de/fileadmin/user_upload/fachgebiete/doellner/publications/2012/WKO12/winnemoeller-cag2012.pdf
https://hpi.de/fileadmin/user_upload/fachgebiete/doellner/publications/2012/WKO12/winnemoeller-cag2012.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.5904
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.5904
http://www.math.ens.fr/culturemath/maths/mathapli/imagerie-Morel/Buades-Coll-Morel-movies.pdf
http://www.math.ens.fr/culturemath/maths/mathapli/imagerie-Morel/Buades-Coll-Morel-movies.pdf

6 Submission

Turn in your files to the online submission system and make sure all your files
are in the asst directory under the root of the zip file. If your code compiles
on the submission system, it is organized correctly. The submission system
will run code in your main function, but we will not use this code for grading.
The submission system should also show you the image your code writes to the
./Output directory

In the submission system, there will be a form in which you should answer
the following questions:

e How long did the assignment take? (in minutes)

e Potential issues with your solution and explanation of partial comple-
tion (for partial credit)

e Any extra credit you may have implemented and their function signa-
tures if applicable

e Collaboration acknowledgment (you must write your own code)
e What was most unclear/difficult?

e What was most exciting?

10

	Summary
	Smart Accessor
	Blurring
	Box blur
	General kernels
	Gradients
	Gaussian Filtering
	1D Horizontal Gaussian filtering
	2D Gaussian Filtering
	Separable 2D Gaussian Filtering

	Sharpening

	Denoising using Bilateral Filtering
	6.8370 only (or 5% Extra Credit): YUV version

	Extra credit
	Submission

