MIT EECS 6.8370/1: Assignment 3:

Denoising and Demosaicing

Due Wednesday October 2 at 9pm

1 Summary
e Denoising based on averaging
e Variance and signal-to-noise computation
e Image alignment using brute force least squares
e Basic green channel demosaicking
e Basic red and blue channel demosaicking
e Edge-based green channel demoasaicking

e Red and blue channel demosaicking based on difference to green

6.8370 only: reconstructing the color of old Russian photographs

2 Denoising from a sequence of images

2.1 Basic sequence denoising

In our image formation model, the image captured by the camera I (x,y,2) is the
sum of a latent (i.e. unknown) image I(z,y, z) and some random noise n(z, y, z):

I(x,y,2) = I(z,y,2) +n(z,y.2) . (1)

Note that both n and I are random variables in this model. If we further assume
that n is zero-mean, then the expected value E(I) = I is the true image we wish
to capture.

This gives us a simple denoising method: we can take N shots of the
same subject (i.e. the subject and the camera are static) and average these
measurements (i.e. the captured images). The empirical mean is an estimate of
the true image I:

N
E(I):Nzlk' (2)
k

In (2) I is a realization of the random variable I.



1 Write a simple denoising method Image denoiseSeq(const
vector<Image> &imgs) in align.cpp that takes an image sequence
as input and returns a denoised version by computing the per-pixel
average of all the images. Note: at this point, you should assume that
the images are perfectly aligned and have the same size.

Try your function on the sequence in the directory aligned-IS03200 follow-
ing the example in a3 _main.cpp. We suggest testing with at least 16 images
and experimenting with more images to see how well the method converges.

2.2 ISO

The Inputs folder contains two image sequences, aligned-1S0400 and aligned-
1S03200. The scene is identical for both sequences, but camera settings differ

e The ISO400 sequence was captured with long exposure and only moderate
electronic amplification (higher ISO means more amplification) of the
sensor readout.

e For the ISO3200 sequence, the exposure time was reduced by a factor of 8.
To make both sequences appear equally bright despite the shorter exposure
time, ISO was increased by a factor of 8.

2 Denoise both the ISO400 sequence and the ISO3200 sequence. Com-
pare the results. Do they match your expectations? (Answer in the
submission system)

2.3 Variance

Given the same set of N measurements (each measurement being an entire
image), we compute the variance as:
;X
2 2
o (I)ZHZ(L&*E(I)) : (3)
k=1

We can then use the variance to get an estimate of the noise level in the image.
We’ll compute the log signal-to-noise ratio as:

SNR = 10 - logy, (1258) . (4)

A useful summary statistic is the peak-signal-to-noise ratio (PSNR) which is the
maximum value of of the SNR (or log SNR).



3.a Write a function Image logSNR(const vector<Image> &imSeq,
float scale=1.0/20.0) in align.cpp that returns an image visu-
alizing the per-channel per-pixel log signal-to-noise ratio (using the
formula above) scaled by scale. Note: In the SNR computation, for
‘numerical lubrication,” add a small value (107%) to the denominator
to avoid division by zero.

3.b Compare the signal-to-noise ratio of the IS0 3200 and ISO 400 se-
quences. Which ISO has better SNR? Answer the question in the
submission system.

To get a more reliable estimate in the SNR use at least 16 images, (more will
give you better estimates). Visualize the variance of the images in aligned-IS03200
in a3 main. cpp.

2.4 Alignment

The image sequences you have looked at so far have been perfectly aligned.
Sometimes, the camera might move, so we need to align the images before
denoising. In what follows we will assume that the misalignment is only horizontal
or vertical translation on the image plane.

4.a Write a function vector<int> align(const Image &iml, const

Image &im2, int max0ffset=20) in align.cpp that returns the hor-
izontal and vertical offset (e.g. [x, y]) that best aligns im2 to match
iml.
To align the images, use a brute force approach that tries every
possible integer translation (in the range [max0ffset, max0ffset]| in
each direction) and evaluates the quality of a match using the the
sum of the squared pixel differences. Ignore pixels that are within
distance of max0ffset from the image boundaries in the computation
of the cost to avoid edge issues.

You may want to use float Image::smartAccessor(int x, int y,
int z, bool clamp) to clamp pixel values that are outside of the
image bounds.

Make sure to test your procedure before moving on. A simple test
would be to generate two image, say 100 x 100 x 1 and have one
contain a white rectangle at [40,40] — [60,50] and the other at
[50,60] — [70,70] and test your method using max0ffset = 20.

4.b Use align to create a function Image
alignAndDenoise(const vector<Image> &imSeq,
int maxO0ffset=10) in align.cpp that aligns all images to the first
image in the sequence then outputs a denoised image. This allows




(a) Averaging (b) Aligned Averaging

Figure 1: Result of denoising the first 9 images of the green sequence (a) naively
averaging and (b) averaging after first aligning the images. Zoom in on the
image edges, what do you notice?

you to produce a denoised image even when the input sequence is not
perfectly registered to begin with. Running alignAndDenoise can
take a few minutes.

Use the images in the folder Input/green/noise-small-<xx>.png where
xx = [1, 18] to test your procedure and replicate the results of Figure 1.

4.c What max0ffset did you use? Qualitatively, what image features
are preserved? Which are eliminated? What else can you think of
doing to reduce the noise in these images ? (Answer in the submission
form).




Figure 2: The Bayer mosaic

3 Demosaicing

Most digital sensors record color images through a Bayer mosaic, where each
pixels captures only one of the three color channels. Subsequently, software
interpolation is then needed to reconstruct all three channels at each pixel. The
green channel is recorded twice as densely as red and blue, as shown in Figure 2.

5 Why does it make sense to oversample the green channel compared
to red and blue? (Answer in the submission form.)

We have provided a number of raw images for you in the folder Input/raw.
These raw images are encoded as greyscale images. You can open them in your
favorite image viewer and zoom in to see the pattern of the Bayer mosaic. Your
task in what follows is to write functions to demosaic them. We encourage you to
debug your code using signs-small.png because it is not too large and exhibits
many of the interesting challenges of demosaicing.

For simplicity, we will ignore the case of pixels near the image boundaries.
That is, the first and last rows (and columns) of pixels don’t need to be recon-
structed. This will allow you to focus on the general case and not worry about
whether neighboring values are unavailable. It’s actually not uncommon for cam-
eras and software to return a slightly-cropped image for similar reasons (http:
//www.luminous-landscape.com/contents/DNG-Recover-Edges.shtml);

3.1 Basic green channel

We will begin with the green channel since it contains more observed pixels.


http://www.luminous-landscape.com/contents/DNG-Recover-Edges.shtml
http://www.luminous-landscape.com/contents/DNG-Recover-Edges.shtml

6 Write a function Image basicGreen(const Image &raw, int offset
in demosaic.cpp that takes as input a raw single-channel grayscale
image and returns a single-channel 2D image corresponding to the
interpolated green channel. Note: when you are testing, keep in mind
that our Image class reads grayscale png images as a three-channel
image where all channels have the same content.

The offset encodes whether the top-left pixel or its neighbor imme-
diately to the right is the first green pixel (possible values are [0, 1]).
Make your code general so that it works for either offset since dif-
ferent cameras use different conventions. In the case of Figure 2,
the second pixel in the first row is green offset=1. For the image
signs-small.png offset=1. Hint: notice that the starting point
varies, but the structure of the pattern is fixed.

For pixels where green is recorded, simply copy the value. For unob-
served pixel, fill in the green value as the average of its 4 recorded
green neighbors (up, down, left, right).

For simplicity, do not attempt to interpolate the first and last row and
column of the image. Just copy their pixel values from the raw image
into your output. By ignoring the reconstruction of these rows and
columns all the pixels you need to reconstruct have a 4-neighborhood.

Try your image on the included raw files and verify that you get a nice
smooth interpolation. You can try on your own raw images by converting them
using the program dcraw.

3.2 Basic red and blue

So far we have obtained our demosaic green channel. Now we will be applying
a similar process to the remaining red and blue channels. Since the sampling
frequency of these channels is the same, we will treat them as equivalent.

7.a Write a function Image basicRorB(const Image &raw, int offsetX
int offsetY) in demosaic.cpp to deal with the sparser red and
blue channels. The function takes a raw image and returns a 2D
single-channel image as output. The input offsetX, offsetY are
the coordinates of the first pixel of the channel we are demosaicing
(hint: as before the starting location of the pattern varies but the
structure does not). In the case of Figure 2, the red channel begins at
pixel (0, 0), and the blue channel at (1,1). That is to extract the red
and blue channel we would call the function twice as:

Image red = basicRorB(raw, 0, 0);
Image blue = basicRorB(raw, 1, 1);




Similar to the green-channel case, copy the values when they are
available. For unknown pixels that have two direct neighbors that
are known (left-right or up-down), simply take the average between
the two values. For the remaining case, interpolate the four diagonal
pixels. You can ignore the first and last two rows (or columns) to
make sure that all unknown pixels have the necessary neighbors.

7.b Implement a function Image basicDemosaic(const Image &raw, int
offsetGreen=1, int offsetRedX=1, int offsetRedY=1,
int offsetBlueX=0, int offsetBlueY=0) in demosaic.cpp that
takes a raw image and returns a full three-channel RGB image demo-
saiced with the above functions. You might observe some checkerboard
artifacts around strong edges. This is expected from such a naive
approach.

Try your basicDemosaic function on other images in the Input/raw/ folder.
We will leave it up to you to figure out the offsets for other images (if any).

4 Edge-based green

One central idea to improve demosaicing is to exploit structures and patterns in
natural images. In particular, structures like edges can be exploited to remove
artifact from the naive interpolation. The intuition is to limit the interpolation
to regions where pixel values are expected to be similar and compute the value
of unobserved pixels based on observed pixels in the same regions.

We will implement the simplest version of this principle, ‘edge-based demo-
saicing’, to improve the interpolation of the green channel (we focus on green
because it has a higher sampling rate). In edge-based demosaicing, we will
compute the values of unobserved pixels based on the values of neighbors from
the same region, where regions are determined by pixels being on the same side
of an edge. We will focus on only two types of edges: horizontal and vertical. To
compute these edges, we rely on pixel differences of the top-bottom neighbors
(or left-right neighbors) of the unobserved pixel. Based on the value of these
‘edges’ we will decide which of the two neighbor pairs to average to obtain the
final value of our unobserved pixel. The final value for an unobserved pixel will
be the average of only two pixels, either up and down or left and right based on
the values of the edges.

8.a Should we interpolate along the direction of biggest or smallest vari-
ation in pixel values? (Answer in the submission form.) Hint: it is
up to you to think or experiment and decide what to do. It’s also
possible that the slides might help. ..

8.b Write a function Image edgeBasedGreen(const Image &raw, int




8.d

offset=0) in demosaic.cpp that takes a raw image and outputs an
adaptively interpolated single-channel image corresponding to the
green channel. Aside from the adaptive components, all other aspects
are the same as basicGreen. Hint: this function should give better
results for horizontal and vertical edges than its basic counterpart.

Write a function Image edgeBasedGreenDemosaic(const Image &raw
int offsetGreen=1, int offsetRedX=1, int offsetRedY=1, int
offsetBlueX=0, int offsetBlueY=0) in demosaic.cpp that takes
a raw image and returns a full RGB images with the green chan-
nel demosaiced with edgeBasedGreen and the red and blue channels
demosaiced with basicRorB.

Do you see any artifact with this new edgeBased method? If yes, what
could be improved? (Answer in the submission form.)

5 Red and blue based on green

A number of demosaicing techniques work in two steps. First they focus on
getting a high-resolution interpolation of the green channel using a technique
such as edgeBasedGreen. Then they rely on this high-quality green channel to
guide the interpolation of the red and blue channels.

One simple such approach is to interpolate the difference between red and
green channel. That is, instead of interpolating the red channel directly, we
interpolate the difference between red and green channel of the observed neigh-
boring pixels and add the missing value from green channel after interpolation.
The same procedure holds when applied to the blue channel.

9.a

9.b

Write a function called Image greenBasedRorB(const Image &raw,
Image &green, int offsetX, int offsetY) in demosaic.cpp that
interpolates the red (or blue) channels as the difference R-G (or B-G).

In this case, we are not trying to be clever about 1D structures because
we assume that this has been taken care of by the green channel. Aside
from the interpolation differences, this function is identical to its basic
counterpart basicRorB.

Write a function Image improvedDemosaic(const Image &raw,
int offsetGreen, int offsetRedX, int offsetRedY, int
offsetBlueX, int offsetBlueY) in demosaic.cpp that takes a raw
image and returns a full RGB images with the green channel demo-
saiced with edgeBasedGreen and the red and blue channels demo-
saiced with greenBasedRorB.

Try this new improved demosaicing pipeline on signs-small.png to replicate




the results of Figure 3. Notice that most (but not all) artifacts are gone.

(a) basicDemosaic (b) edgeBasedGreenDemosaic (c) improvedDemosaic

Figure 3: Results of demosaicing using the 3 different methods. Notice how
artifacts appear around the edges of the resulting image when using basic
interpolation. However, an edge aware demosaicing algorithm significantly
decreases the artifacts in these regions.

6 6.8370 only (or 5% Extra Credit): Sergey Prokudin-
Gorsky

The Russian photographer Sergey Prokudin-Gorsky took beautiful color pho-
tographs in the early 1900s by sequentially exposing three plates with three
different filters:
http://en.wikipedia.org/wiki/Prokudin-Gorskii
http://www.loc.gov/exhibits/empire/gorskii.html.

We include a number of these triplets of images in Input/Sergey (courtesy
of Alyosha Efros). Your task is to reconstruct RGB images given these inputs.
In order to do so, we will first split the triplets then align them.


http://en.wikipedia.org/wiki/Prokudin-Gorskii
http://www.loc.gov/exhibits/empire/gorskii.html

Figure 4: Sample image sequence by Prokudin-Gorsky

6.1 Cropping and splitting

10 Write a function Image split(const Image &sergeylImg) in
align.cpp that vertically splits an image into 3 segments and turns
returns the segments as a single 3-channel image. Note that the input
triplet order from top to bottom is blue, green, red, and you are
supposed to output a RGB image.

We have cropped the original images so that the image boundaries
are approzimately 1/3 and 2/3 along the y dimension. Use floor to
compute the height of your final output image from the height of your
input image.

6.2 Alignment

The image that you get out of your split function will have its 3 channels
misaligned. Use the align function to correct this misalignment.

11 Write the function Image sergeyRGB(const Image &sergeyImg, int
max0ffset=20) in align.cpp that first calls your split function, but
then aligns the green and blue channels of your RGB image to the

10



red channel. Your function should return a beautifully aligned color
image.

(a) Naive RGB (b) Aligned RGB

Figure 5: Generating an RGB image from a single grayscale Sergey image

7 Extra credit (maximum of 10%)

e Speed up the alignment while maintaining accuracy.

e Numerically compute the convergence rate of the error for the sequence
denoising at each pixel. Use a regression in the log domain (log error vs.
log number of images).

e Implement a coarse-to-fine alignment. Use an image pyramid: https:
//en.wikipedia.org/wiki/Pyramid_%28image_processing29

e Take potential rotations into account for alignment. This could be slow!

e Implement smarter demosaicing. Make sure you describe what you did.
For example, you can use all three channels and a bigger neighborhood to
decide the interpolation direction.

e Use deep learning for denoising or demosaicing (denoising is probably easier
in terms of dataset collection)

e Perform demosaicing in 8-bit (e.g. assume the input are integer values
[0,255] and perform all operations as integer arithmetic. The goal here
is to simulate low-powered image processing hardware. You will have to
implement an 8-bit version of the Image class.)

11


https://en.wikipedia.org/wiki/Pyramid_%28image_processing%29
https://en.wikipedia.org/wiki/Pyramid_%28image_processing%29

8 Submission

Turn in your files to the online submission system and make sure all your files
are in the asst directory under the root of the zip file. If your code compiles
on the submission system, it is organized correctly. The submission system
will run code in your main function, but we will not use this code for grading.
The submission system should also show you the image your code writes to the
./Output directory

In the submission system, there will be a form in which you should answer
the following questions:

e How long did the assignment take? (in minutes)

e Potential issues with your solution and explanation of partial comple-
tion (for partial credit)

e Any extra credit you may have implemented and their function signa-
tures if applicable

e Collaboration acknowledgment (you must write your own code)
e What was most unclear/difficult?

e What was most exciting?

12



	Summary
	Denoising from a sequence of images
	Basic sequence denoising
	ISO
	Variance
	Alignment

	Demosaicing
	Basic green channel
	Basic red and blue

	Edge-based green
	Red and blue based on green
	6.8370 only (or 5% Extra Credit): Sergey Prokudin-Gorsky
	Cropping and splitting
	Alignment

	Extra credit (maximum of 10%)
	Submission

