
MIT EECS 6.8370/1: Assignment 4:

HDR and Tonemapping

Due Wednesday October 9 at 9pm

1 Summary

• merge N bracketed images into an HDR image

• tone mapping with Gaussian and Bilateral blurs

Important. To merge images to HDR, we will work with images encoded
linearly. Most of the digital images you may encounter are encoded with a
gamma of 2.2 (in particular those of the handout). Therefore, in this problem
set, you will have to undo the gamma 2.2 from your inputs before merging them
to HDR. You will also have to apply a gamma 2.2 to the images you output in the
linear domain (e.g. after tone-mapping). You can use the gamma code function
from problem set 1 that can be found in basicImageManipulation.cpp to do
this. We assume all the inputs and outputs of the functions in this problem set
are in the linear space (i.e. you will need to undo the gamma before you call the
function and you will need to apply gamma after you tone map).

In the whole assignment, we will only work with images of static subjects
and the camera hasn’t moved between shots in the same sequence.

2 HDR merging

Consult the course slides for the overall HDR merging approach. We will first
compute weights for each pixel and each channel to eliminate values that are
too high or too low. We will then compute the scale factor between the values
of two images, to determine their relative exposures.

Finally, we will merge a sequence of images using a weighted combination
of the individual images leveraging the weights and scale factors. The slide
“Assembling HDR” in lecture 6 might be helpful here.

1.a Weights. Write a function Image computeWeight(const Image

&im, float epsilonMini=0.002, float epsilonMaxi=0.99) that
returns an image with pixel value 1.0 when the corresponding pixel
value of im is between epsilonMini and epsilonMaxi, and 0.0 oth-
erwise. The weights are computed on a per pixel and per channel
basis.

1.b Factor. Now that we know which pixels are usable, we can compute

1

the multiplication factor between a pair of images. Write a func-
tion float computeFactor that takes two images and their weights
computed using the above method, and returns a single scalar corre-
sponding to the median value over all pixels and channels of im2/im1
for pixels that are usable in both im1 and im2. Add an epsilon of
10−10 to the pixels of im1 to avoid divide by 0 errors.

(a) w1 (b) w2

Figure 1: The weights computed from the ante2 image sequence using the
default parameters provided in computeWeight. You can see this output after
running testComputeFactor.

With these two methods, we know which pixels are usable in each image and
what the relative exposures between the images is. With this information we are
ready to merge a sequence of images to a single HDR image.

For the rest of the problem, you can assume that the first image in the sequence
is the darkest, and that images are given in order of increasing exposure.

For each image in the given sequence, you need to compute its multiplicative
scale factor (ki in the equation on the “Assembling HDR” slide from lecture
6). This requires computing the scale factor between adjacent images in the
sequence using computeFactor, then chaining them together. For example, if
you have the factor between image 3 and image 2 and image 2 and image 1, you
can compute the factor between image 3 and image 1 by chaining the factors
together:

k3
k1

=
k3
k2

k2
k1

You should should pick one of the images as the ‘reference’ image (e.g. the
darkest image), and compute the factors with respect to it. This means that each
image’s ki value will be relative to your ‘reference’ image i.e. you will compute
it only up to a global scale factor.

Do not forget to handle the special case of pixels underexposed (or over-
exposed) in all images, see slide “Special Cases” in lecture 6. That is, when
computing the weight of the darkest and brightest images, you should only
threshold in one direction for these cases. If a pixel is not assigned to any of the

2

weight images, then assign it the corresponding value from the first image in the
sequence (by doing this you should avoid any divide by 0 errors as well). As you
merge pixels do not forget to scale them with the factors computed above.

To test your method, you can write out the output image scaled by different
scaling values. testMakeHDR in a4 main.cpp illustrates the process for the
design image sequence.

2 Merge to HDR Write a function
Image makeHDR(const vector<Image> imageList,

float epsilonMini=0.002, float epsilonMaxi=0.99) that takes
a sequence of images as input and returns a single HDR image.

3

(a) 1 (b) 2e2 (c) 2e4

(d) 2e6 (e) 2e8 (f) 2e10

Figure 2: The HDR image created from the design image sequence clipped to
different ranges. You can see this output after running testMakeHDR.

4

3 Tone mapping

We have assembled our first HDR image, but this image still cannot be displayed
properly on our low dynamic range screen. Let’s implement tone mapping to
remap the HDR information to a displayable range. Make sure you understand
the slides “Contrast reduction in log domain” in order to combine the base
luminance, detail and brightness scaling factor.

Your tone mapper will follow the method studied in class. The function is
called toneMap. It takes as input an HDR image, a target contrast for the base
(lowpass) layer, an amplification factor for the detail, and a Boolean to switch
the lowpass/highpass separation between the bilateral filter or Gaussian blur.

As described in the lecture, our goal is to reduce the contrast from the HDR
image (say, 1:10000) to what the display can show (say 1:100). Although gamma
correction might seem like the first thing to consider, this results in washed
out images, as shown on the gamma compression slide in lecture 7. The colors
are actually okay (they’re all there) but the high frequencies are washed out.
We therefore want to work on the luminance, and increase the high frequencies.
We also want to work in the log-domain since the human eye is sensitive to
multiplicative contrast (recall lecture 1).

We want to modify only on the log-luminance:

3.a In the function toneMap, first decompose your image into luminance
and chrominance using the function from problem set 1
std::vector<Image> lumiChromi(const Image &im) that can be
found in basicImageManipulation.cpp. We also provide you the
reciprocal function lumiChromi2rgb.

3.b Next, compute a log10 version of the luminance. Add a small constant
(e.g. the minimum non-zero value) to the luminance to avoid divergence
at 0.

We recommend you do this by first implementing the helper function
float image minnonzero(const Image &im), followed by
Image log10Image(const Image &im), for which we have written
function signatures and comments for you. Then, call log10Image
with the luminance image as the argument.

Next, we want to extract the detail of the (log) luminance channel. We
do this by blurring the log luminance, and subtracting this from the original
log luminance. If you recall problem set 2, this gives you the details (high
frequencies).

3.c You are ready to compute the base (blurry) luminance. We will
implement two versions: Gaussian blur and bilateral filtering, which
will be chosen based on the value of the input parameter useBila. In

5

both cases, we will use a standard deviation for the spatial Gaussian
equal to the biggest dimension of the image divided by 50. The
parameter truncateDomain should be set to the default value of 3.

You are welcome to use your own implementation of filtering methods,
but you can also use our versions in filtering.cpp.

3.d Given the base, compute the detail by taking the difference from the
original log luminance.

3.e What differences do you expect to see in your tone mapping results
when using a bilateral filter compared with a Gaussian filter and why?
Answer in the submission form. (hint: the slides might help).

At this point we have a detail image and a base image. Our goal is to reduce
the contrast on the base image while also preserving (or even amplifying) the
details. The slides “Contrast Reduction in log domain” might be helpful here.

3.f Compute the scale factor k in the log domain that brings the dynamic
range of the base layer to the given target (that is, the range in the
log domain should be log10(targetBase) after applying k). Scale
the base image by the factor k to reduce the contrast, and multiply
the details (in the log domain) by detailAmp. Next, add the scaled
base and amplified detail to obtain your new log luminance.

Make sure to add an offset that ensures that the largest base value
will be mapped to 1 once the image is put back into the linear domain

We have provided two new functions for you that you might find useful:
float Image::min() const and float Image::max() const to get
the minimum (respectively maximum) value of an image.

3.g Convert this new luminance back to the linear domain (you may want
to separately implement Image exp10Image(const Image &im)).
Then, reintegrate the chrominance into the resulting image. We’ve pro-
vided the function Image lumiChromi2rgb(const vector<Image> &

lumiChromi) in basicImageManipulation.cpp which might be help-
ful.

Enjoy your results and compare the bilateral version with the Gaussian
one. Use the functions testToneMapping ante2, testToneMapping ante3,

testToneMapping design, testToneMapping boston in a4 main.cpp to help
test your tone mapping function. Feel free to try them on your own images!

Note: The bilateral filter on the design image sequence takes a very long
time. It is not necessary to test bilateral filter tone mapping for this image
sequence. If you do test it, you likely won’t get exactly the same image as given
in the slides because it was generated with different parameters.

6

(a) Gaussian Tone Mapping (b) Bilateral Tone Mapping

Figure 3: Tone mapping of the ante2 image sequence using the parameters
provided in testToneMapping ante2

(a) Gaussian Tone Mapping (b) Bilateral Tone Mapping

Figure 4: Tone mapping of the boston image sequence using the parameters
provided in testToneMapping boston

4 Extra credit (10% max)

• (5%) Deal with image alignment (e.g. the sea images). We recom-
mend Ward’s median method http://www.anyhere.com/gward/papers/

jgtpap2.pdf but probably single-scale to make life easier yet slower. Al-
ternatively, you can simulate the clipping in the darker of two images.

• (5%) Derive better weights by taking noise into account. You can focus on
photon noise alone. This should give you an estimate of standard deviation
(or something proportional to the standard deviation) for each pixel value
in each image. Use a formula for the optimal combination as a function
of variance to derive your weights. This should replace the thresholding
for dark pixels, but you still need to set the weight to zero for pixels
dangerously close to 1.0.

• (5%) Write a function to calibrate the response curve of a camera. See
http://www.pauldebevec.com/Research/HDR/

7

http://www.anyhere.com/gward/papers/jgtpap2.pdf
http://www.anyhere.com/gward/papers/jgtpap2.pdf
http://www.pauldebevec.com/Research/HDR/

• (10%) Implement the bilateral grid for fast bilateral filtering. See http:

//groups.csail.mit.edu/graphics/bilagrid/ with more mathematical
justifications at http://people.csail.mit.edu/sparis/publi/2009/ijcv/
Paris_09_Fast_Approximation.pdf

• (10%) Hard: deal with moving objects

5 Submission

Turn in your files to the online submission system and make sure all your files
are in the asst directory under the root of the zip file. If your code compiles
on the submission system, it is organized correctly. The submission system
will run code in your main function, but we will not use this code for grading.
The submission system should also show you the image your code writes to the
./Output directory

In the submission system, there will be a form in which you should answer
the following questions:

• How long did the assignment take? (in minutes)

• Potential issues with your solution and explanation of partial comple-
tion (for partial credit)

• Any extra credit you may have implemented and their function signa-
tures if applicable

• Collaboration acknowledgment (you must write your own code)

• What was most unclear/difficult?

• What was most exciting?

8

http://groups.csail.mit.edu/graphics/bilagrid/
http://groups.csail.mit.edu/graphics/bilagrid/
http://people.csail.mit.edu/sparis/publi/2009/ijcv/Paris_09_Fast_Approximation.pdf
http://people.csail.mit.edu/sparis/publi/2009/ijcv/Paris_09_Fast_Approximation.pdf

	Summary
	HDR merging
	Tone mapping
	Extra credit (10% max)
	Submission

