MIT EECS 6.8370/1: Assignment 5:
Resampling, Warping and Morphing

Due Wednesday October 16 at 9pm

1 Summary

This problem set has several questions for extra credit. Feel free to attempt
them, but do the main problems first. The maximum extra credit is 10%. The
last section of this is submitting a photo of yourself, which might take some time
depending on what type of person you are. So don’t put it off!

e Scaling using nearest-neighbor and bilinear reconstruction

e Scaling using bicubic and Lanczos methods (6.8370 only)

e Image warping according to one pair of segments

e Image warping according to two lists of segments, using weighted warping

e Image morphing

Take a photo of yourself

2 Resampling

In this section, we will rescale images, starting with simple transformations and
naive reconstructions. See Figure 1 for examples of scaling with various methods,
together with a small crop of the resulting image to highlight the differences.

2.1 Basic scaling with nearest-neighbor

The first operation we consider is the re-scaling of an image by a global scale
factor s. If s > 1, the operation will enlarge the input. If 0 < s < 1, it will
shrink the input.

To implement this operation, we need to create a new Image object that is
s times larger (resp. x smaller if s < 1) than the original in both width and
height. Use floor() to get an integral size for the new image.

We now have to fill the pixel values of this new image from those of the
input: this is called re-sampling. For each pixel in the new image, we look up
the color value in the input image at a location that corresponds to the inverse
transform (in this case a scaling by %) In general this location will not be on
grid and we’ll have to estimate the color at this location using information from
the neighboring pixels.

(a) Original Image

(b) Scaling by 3.5x with nearest neighbor interpolation using scaleNN

(c) Scaling by 3.5x with bilinear interpolation using scaleLin

(d) Scaling by 3.5 with bicubic interpolation

Figure 1: Basic Image scaling.

The simplest technique to sample the new value is called nearest-neighbor
re-sampling: we round-off the real coordinates to the nearest integers and use
the input’s color at this new location to be the value of the current output pixel.

1 Implement the Image scaleNN(const Image &im, float scale)
function in basicImageManipulation.cpp. This function should
create a new image that is scale times the size of the input using the
nearest-neighbor re-sampling method.

2.2 Scaling with bilinear interpolation

Nearest-neighbor re-sampling creates blocky artifacts and pixelated results. We
will address this using a better reconstruction based on bilinear interpolation.
For this, we consider the four pixels immediately around the computed real
coordinates and perform two linear interpolations. We first linearly interpolate
along = the colors of the top and bottom pairs of pixels. Then we interpolate
these two values along y to get the final sample. The interpolation weight are
driven by the distance from the corners (see Fig. 2).

d

(—ﬁ’
A E 8

3

)

\
)
]
\
\
]

-k X (=)

DU =

Figure 2: Bilinear interpolation. We sample the value at location X (non integer
coordinates) by interpolating the neighboring pixels’ values. First, linearly
interpolate the values of A and B along x. Do the same for D and C. This gives
you pixel values at F and F. Linearly interpolate these two values along y to
obtain X’s colors.

2.a Implement float interpolateLin(const Image &im, float x,
float y, int z, bool clamp) in basicImageManipulation.cpp.
This function takes floating point coordinates and performs bilinear
reconstruction on the given channel z. Don’t forget to use smart
accessors to make sure you can handle coordinates outside the image.

2.b Next, write an image scaling function Image scalelLin(const Image
&im, float scale) in basicImageManipulation.cpp that rescale
using linear interpolation by calling interpolatelLin where appropri-
ate. Use clamp = true.

2.3 Bicubic and Lanczos (required for 6.8370, 5% Extra
credit for 6.8371)

You can obtain a better interpolation by considering a larger pixel footprint and
using smarter weights, such as that given by a bicubic or Lanczos functions.

You may think of resampling from the view point of convolution to better
understand how bicubic/Lanczos resampling kernels work. For example, bilinear
interpolation for 3x upscaling would be equivalent to first scaling the image
naively (by only taking the existing pixels from the source image and keeping the
rest as blank) and then applying a 5 X 5 convolution kernel (how does the kernel
look like? A square pyramid) to the naively scaled image. Hint: This means
that an easy implementation of bicubic and Lanczos resampling is to follow
the steps of convolution and use analytical weights k(x) instead of numerically
discretized ones. And bilinear /bicubic/Lanczos resampling is separable, which
means you can multiply horizontal and vertical weights k(z) and k(y) to get the
2D weight.

3 Implement the Image scaleCubic(const Image &im, float scale,
float B, float C) function in basicImageManipulation.cpp. This
function should create a new image that is scale times the size of the
input using a bicubic filter kernel. We will use the kernel parametriza-
tion from Mitchell and Netravali (“Reconstruction Filters in Computer
Graphics”, Mitchell and Netravali 1988):

12— 9B — 6C)|z|>+

—18412B+6C)|z|* + (6 —2B) if |z| <1

—B —60)|z]* + (6B + 30C)|z|*+ (1)
—12B — 48C)|z| + (8B + 240) if 1< |z] <2

0 otherwise

(
(
k() =24 (
(

A nice parameter to test your filter kernel is B = C' = %

4 Implement the Image scalelLanczos(const Image &im, float scalg
float a) function in basicImageManipulation.cpp. This function
should create a new image that is scale times the size of the input

using a Lanczos filter kernel. The kernel is:

h(z) = {sinc(x)sinc(x/a) if |[z] < a)

0 otherwise

where sinc(z) = sin(wx)/(7z). A nice parameter to test your filter
kernel is a = 3.

2.4 Rotations (5% extra credit)

5 Implement the function rotate(const Image &im,
float theta) in basicImageManipulation.cpp that rotates an im-
age around its center by 6 radians. Hint: use your bilinear interpola-
tion function and the center position already present in the starter

code.
i
XK
7
, \e
L-—-)
Q A

Figure 3: Rotation with an angle # > 0 with respect to the center of the image
(to get the pixel value at A’, sample from location A in the input image. Last
two images: example rotation by 7 using rotate.

3 Warping and morphing

In what follows, you will implement image warping and morphing accord-
ing to Beier and Neely’s method, which was used for special effects such as
those of Michael Jackson’s Black or White music video (https://youtu.be/
F2AitTPI5UO0).

We highly recommend that you read the provided original article, which is
well written and includes important references such as Ghost Busters.

Beier, Thaddeus, and Shawn Neely. “Feature-based image metamorphosis.”
ACM SIGGRAPH Computer Graphics. Vol. 26. No. 2. ACM, 1992.

The full method for warping and morphing includes a number of technical
components and it is critical that you debug them as you implement each
individual one. A copy of the paper is included in the handout.

https://youtu.be/F2AitTPI5U0
https://youtu.be/F2AitTPI5U0

3.1 Basic Vector Tools

Warping and morphing geometrically distort an input image. This requires a few
vector operation which you’ll implement. We provide you a basic Vec2f class to
represent 2D vectors.

6.a In morphing.cpp, implement Vec2f operator+(const Vec2f & a,
const Vec2f & b) to sum two vectors a + b.

6.b In morphing.cpp, implement Vec2f operator-(const Vec2f & a,
const Vec2f & b) that returns the difference a — b.

6.c In morphing.cpp, implement Vec2f operator*(const Vec2f & a,
float f) that implements multiplication by a scalar f - a.

6.d In morphing.cpp, implement Vec2f operator/(const Vec2f & a,
float f) that implements division by a scalar a/f.

6. In morphing.cpp, implement Vec2f dot(const Vec2f &a, const
Vec2f &b) that implements the dot product of two vectors: a, * b, +
ay * by.

6.f In morphing.cpp, implement float length(const Vec2f &a) that
returns the length of a vector (in the L? sense): [la]| = /a2 + a2.

6.g¢ In morphing.cpp, implement Vec2f perpendicular(const Vec2f
&a) that returns a vector that is perpendicular to a. Hint: either of
the two possible directions is fine.

Don’t forget to test your functions. We have provided some basic tests for
you in ab_main.

3.2 Segments

Now that we have some basic tools, we will implement the Segment class, which
is critical to Beier and Neely’s warping. A Segment represents a directed line

segment, P@ The class holds a copy of the endpoints P and @, the length of
the segment ||PQ||, and a local orthonormal frame (e7, €3). We define:

qo 19 (3)
1PQl
%

3 completes the orthonormal frame (e.g. &5 is perpendicular to e_l)), see Figure 4.
Both frame vectors and the length of the segment need to be initialized in the
class constructor and can be used directly in its class functions.

Figure 4: Directed segment and its local coordinate system. Don’t forget that u
as defined in the paper is not exactly the coordinate in the local frame.

7 Inmorphing. cpp, complete the constructor Segment : : Segment (Vec2f
P_, Vec2f Q.) that creates a segment from its two endpoints and
initializes the data structure properly.

Now that our Segment class is usable let’s implement methods to convert
from the global (z,y) coordinates of a point to the local (u,v) coordinates in
the reference frame as in Beier and Neely, e.g., equations (1) and (2) in the
paper, and the reverse (equation (3)). A word of caution: although v exactly
corresponds to the second coordinate in the local frame, u is actually rescaled
(so read equation (1) carefully).

8.a Implement Vec2f Segment: :XtoUV(Vec2f &X) to compute the (u,v)
coordinates of a 2D point X = (z,y) with respect to a segment as
described in the paper.

8.b Conversely, implement Vec2f Segment::UVtoX(Vec2f &uv) to com-
pute the (z,y) global coordinates of a 2D point from its local (u,v)
coordinates.

8.c Implement the point to segment distance function
float Segment::distance(Vec2f X) as described in section 3.3 of
the paper.

Test these methods thoroughly as they will be used in the warping and mor-
phing functions in the later part of the problem set. The function testSegment
in a4 main.cpp is great place to write simple test cases.

3.3 Warping according to one pair of segments

Now that we have a functional Segment class and an interface to specify line
segments, let the fun begin. The core component to warp images is a method to
transform an image according to the displacement of a segment.

Figure 5: Example output of the warpByl function on the bear.png image
using segments: before = Segment((0,0), (10,0)) and after = Segment((10, 10),
(30, 15)).

9 Implement Image warpByl(const Image &im, Segment segBefore,
Segment segAfter). This is a resampling function that warps an
entire image according to one a pair of segments. Hint: Figure 1 of
the Beier and Neely paper might be helpful here.

The output should be an image of the same size as the input such that
the feature under segBefore is now at the location of segAfter. Use bilinear
reconstruction (with clamp = true). Again, use simple examples to test this
function, see Figure 5. Once you are done with this, you have completed the
hardest part of the assignment.

3.4 Warping according to multiple pairs of segments

In this question, you will extend you warp code to perform transformations
according to multiple pairs of segments. For each pixel, transform its 2D
coordinates according to each pair of segments and take a weighted average
according to the length of each segment and the distance of the pixel to the
segments. Specifically, the weight is given according to Beier and Neely:

length? b
a+dist

weight = ((4)

where a, b, p are parameters that control the interpolation. In our test, we have
used b =p =1 and a = 10 (roughly 5% of the image size).

10.a Implement float Segment::weight(Vec2f &X, float a, float b,
float p) based on the formula above.

10.b Implement Image warp(const Image &im, const &vector<Segment>
src_segs, const &vector<Segment> dst_segs, float a=10.0,
float b=1.0, p=1.0) which returns a new warped image according

to the list of before and after segments. Pay attention to the order
of the segments, where you should loop over output pixels. Hint:
section 3.3 of the paper and the above function will be helpful here.

Use the provided javascript Ul to specify segments. The points must be
entered in the same order on the left and right image. You can then copy-paste
the C++ code generated below the images to create the corresponding segment
objects.

3.5 Ul

We provide you with a rudimentary (to say the least) interface to specify segment
location from a web browser. It is based on javascript and the raphael library
(http://raphaeljs.com/), and improved by students throughout the years. You
specify two input images in morph_ui.html (the images must be the same size).

You must click on the segment endpoints in the same order on the left and
on the right. Unfortunately, you cannot edit the locations after you have clicked,
but you can delete edges by double clicking on them. Once you are done, simply
copy the C++ code below each image into your main function to create the
corresponding segments.

vector=Segment™ segsBefore: vector=Segment™ segsAfier;
segsBefore push_back(Segment(56. 111 69 90)): segsAfter push_back(Segment(61. 103. 78, 76)):
segsBefore push_back(Segment(97_98_ 119 104)): segsAfter push_back(Segment(93. 93 114 101)):

Figure 6: The UI to specify line segments

3.6 Morphing

Given your warping code, we will write a function that generates a morph
sequence between two images. Again, make sure you are familiar with morphing
from the article.

You are given the source and target images, and a list of segments for each
image (the position in the list defines the corresponding pairs of segments, so the

lists should have the same number of elements). You must generate N images
morphing from the first input image to the second input image.

For each image, compute its corresponding time fraction ¢. Then linearly
interpolate the position of each segment’s endpoints according to ¢, where ¢t = 0
corresponds to the position in the first image and t = 1 is the position in the
last image. You might want to visualize the results for debugging.

You now need to warp both the first and last image so that their segment
locations are moved to the segment location at ¢, which will align the features
of the images. We suggest that you write these two images to disk and verify
that the images align and that, as ¢ increases, the images get warped from the
configuration of the first image all the way to that of the last one.

Finally, for each t, perform a linear interpolation between the pixel values of
the two warped images.

Your function should return a sequence of images. For debugging you can
use your main function to write your images to disk using a sequence of names
such as morph_1.png, morph_2.png, ..., see testMorph in a5 main.cpp.

11 Implement morph (im0, iml, listSegmentsBefore,
listSegmentsAfter, N=1, a=10.0, b=1.0, p=1.0). It should re-
turn a sequence of N images in addition to the two inputs (i.e., when
called with the default value of 1, it only generates one new image
for t = 0.5). The function should check that im0 and im1 have the
same size, and throw an exception if not. Note that the interpolation
weight should be at the scale of [0, 1], so we need a time constant of
1/(N + 1) here.

Figure 7: Morph example. Your morphs will look slightly different depending
on what segments you use.

Visualize Results Aside from just looking at the images, you can explore your
results at http://tipix.csail.mit.edu if you wish. Click on load and load

10

http://tipix.csail.mit.edu

your morphed images (make sure to respect the required naming). Then explore
your results using the pointer, or click ”play” from the top-right information
panel.

There are several ways to make a video (or a .gif) out of your files (note
this is not required). You can install ffmpeg http://ffmpeg.org/ but this
involves some number of dependencies. Then use it with, e.g. ffmpeg -i
tes_morph_%02d.png out.gif.

3.7 Class morph

We'll use the code implemented in this problem set to create a class morph. In
order to do that, we need a photo of your face.

12 Submit a selfie (of yourself) as a PNG file named myface.png in the
Input folder of your submission. Feel free to make a silly face if you
want. Make sure it’s named correctly and in the right folder so that
our script can pick up your image.

Make sure your photo follows the following specifications:

e 500 x 600 (500 width, 600 height). There are image rescaling tools online,
or you can use what you implemented earlier this pset!

e The background must be a single color of either white or otherwise pale
color, and there shouldn’t be clutter in your background.

e Your entire face (everything from the neck up) should be visible. Think
passport photo.

e The file should be a png. If it is not, there should be plenty of conversion
tools online.

In the next pset, we will ask you to run your morphing code from your own
face to the face of a peer. Get excited!

4 Extra credit

Here are ideas for extensions you could attempt, for 5% each. At most, on the
entire assignment, you can get 10% of extra credit:

e Improve the javascript UL. The amount of extra credit you get is dependent
on how much improvement you make. We may also keep your improvements
for future classes!

e Extend to movies, where segments are specified at a number of keyframes.

e Morphable face models (see http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.49.9275)

11

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.9275
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.9275

5 Submission

Turn in your files to the online submission system and make sure all your files
are in the asst directory under the root of the zip file. If your code compiles
on the submission system, it is organized correctly. The submission system
will run code in your main function, but we will not use this code for grading.
The submission system should also show you the image your code writes to the
./Output directory

In the submission system, there will be a form in which you should answer
the following questions:

e How long did the assignment take? (in minutes)

e Potential issues with your solution and explanation of partial comple-
tion (for partial credit)

e Any extra credit you may have implemented and their function signa-
tures if applicable

e Collaboration acknowledgment (you must write your own code)
e What was most unclear/difficult?

e What was most exciting?

12

	Summary
	Resampling
	Basic scaling with nearest-neighbor
	Scaling with bilinear interpolation
	Bicubic and Lanczos (required for 6.8370, 5% Extra credit for 6.8371)
	Rotations (5% extra credit)

	Warping and morphing
	Basic Vector Tools
	Segments
	Warping according to one pair of segments
	Warping according to multiple pairs of segments
	UI
	Morphing
	Class morph

	Extra credit
	Submission

