
MIT EECS 6.8370/1: Assignment 6:

Homographies and Manual Panoramas

Due Wednesday October 23 at 9pm

1 Summary

• Class morph

• Warp an image using a homography

• Compute a homography from four pairs of points

• Compute the bounding box of the output merged image

• Stitch two images together to a panorama

• 6.8370: Accelerate the warp using bounding boxes

• 6.8370: Extra test cases.

Be careful. You will need to reuse this code for pset 7 when we will
implement fully automatic panorama stitching and blending.

Also, take a look at homography.h for some potentially useful functions.

2 Class Morph

We will put the photos for your class morph on this webpage by October 23:
http://miki3.csail.mit.edu/morph/. If you are looking at this pset before
October 23, good job! You can skip this part of the pset for now; come back
later and the images should be compiled then.

Search for your username you used to log into the submission website for
your photograph, and use the morph program you wrote for problem set 5 to
morph to the next person on the list. Draw the segment pairs until the result
looks good enough (you would probably need at least 8). Please generate 30
frames (excluding the source and target frame).

1 Generate your morphing images and put them in a class morph

folder in your submission (inside your asst folder.) Name your images
class morph %02d.png (where %02d is replaced by the frame number,
e.g. class morph 01, class morph 02, ...). Notice that you should
have 32 images, numbered from 0 to 31, including the source and
target photos. Please also write a file called segments.txt, containing
the C++ code of the segments you used to perform the morphing,
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generated from the javascript UI.

We will compile everyone’s images and make a video of every person morphing
to every other person in the class.

3 Homogeneous Coordinates

We will work with homogeneous coordinates to deal with the perspective trans-
forms involved in panorama stitching. A point in the Euclidean plane (x, y)T is
represented in the projective plane by the family of homogeneous coordinates
(xw, yw,w)T for any non-zero scalar w. Since a family of points in the projective
plane (for all non-zero w) map to the same point in the 2D plane, we will often
choose w = 1 as representative. We will think of it as the point in the screen
space. Consult the class notes for more details.

4 Linear Algebra

In this problem set we will need some matrix algebra. We will use the Eigen pack-
age as our linear algebra library https://eigen.tuxfamily.org/dox/index.

html. Please have a look at a6 main.cpp for examples on how to use matrices
and vectors in testEigen, namely:

• The class Matrix can be used to store an N ×M matrix of floating point
values.

• To initialize a Matrix object type Matrix mxName(N, M) where N and M

are the number of rows and columns of the matrix mxName respectively.

Keep in mind that using this constructor, the entries of the matrix will
be some garbage values (whatever was in this memory location before
allocation). For example, if you want to initialize an all-zero matrix, use
the special factory method: Matrix mxName = Matrix::Zero(N, M).

• To write to the element i, j of a matrix mxName type mxName(i,j) = value

where value is of type float. As usual, these use zero-based indexing. Be
careful not to index out of bounds.

• We have provided you with two shorthand Vec2f and Vec3f for 2D and
3D vectors (matrices of size 2× 1 and 3× 1).

• To multiply 2 matrices, A and B, using matrix multiplication (A ∗B) type
A*B (provided the dimensions are correct).

• To get the inverse of a matrix A type A.inverse(). You can use the inverse
to solve the system Ax = b, e.g. x = A−1 ∗ b. However, the inverse of large
matrices can be slow (or numerically unstable). As a result in numerical
linear algebra the inverse is replaced by “solvers” that exploit the regularity
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in the matrix A (if any) and can decompose A efficiently. These solvers can
be obtained from the matrix directly, e.g. x = A.fullPivLu().solve(b).

In this problem set computing the inverse when you have a homography
H should be fast and stable. However we recommend, using a fullPivLu

solver when computing the homographies from correspondences.

For more information on solvers see https://eigen.tuxfamily.org/dox/
group__TutorialLinearAlgebra.html.

For more information about the Matrix class and functions, see matrix.h and the
tests in a6 main.cpp. For additional information see the Eigen tutorials https:
//eigen.tuxfamily.org/dox/group__TutorialMatrixClass.html or this ref-
erence sheet https://eigen.tuxfamily.org/dox/AsciiQuickReference.txt.

5 Warp and Image with a Homography

Homography Matrix H is the matrix that transforms the source coordinates
to the output coordinates (forward transformation).

Keep in mind that just like in Morphing we want to transform the output
pixel coordinates into source pixel coordinates to be able to sample from the
source image. This can be done using the inverse of a transform that maps
source coordinates into output coordinates.

You apply a homography matrix to a 2D point (x, y) in the output image by
computing the product:

H−1

 x
y
1

 =

 x′

y′

w′

 . (1)

This will result in the point (x′, y′, w′) in the input image. To get the final
pixel coordinates of the projection plane in the input image, we then divide by
the last projective coordinate: (

x′/w′

y′/w′

)
. (2)

Pixel Boundaries We will treat pixels coordinates outside the source image
differently from previous problem sets. If we sample a location outside of the
bounds of the source image, we want to leave the corresponding output pixels in
the out image untouched. Therefore, you need to test if the warped coordinates
are outside the source image before updating the pixel value.

This scheme might lead to stair artifacts int the output, but we will not
worry about it now. In a later assignment, we will perform nice feathering at
the boundaries between images.
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Figure 1: Composing image green.png with the image poster.png by applying
a homography to the latter.

2 Write a function void applyHomography(const Image &source,

Matrix &H, Image &out, bool bilinear=false) thatmodifies an
image out by compositing on top of it the source image warped using
the 3× 3 homography matrix H. If the Boolean bilinear is True, use
bilinear reconstruction, otherwise use simple nearest neighbor. Use
H.inverse() to calculate H−1 and clamp = true during interpola-
tion. Note: this function does not return anything, it just
modifies out, which is passed as a reference.

Test your function on the provided green.png and poster.png images using
testApplyHomography provided in a6 main.cpp, see Fig. 1.

6 Compute Homography from 4 Pairs of Points

UI In this section, a user will provide correspondences between two images, by
clicking using a patent-pending javascript interface (pano ui.html), and your
job is to infer the homography matrix that maps the 4 points from the first
image to the corresponding 4 points in the other image. As in the warping
problem set, the user needs to click on points in the same order for the left and
right images. When using the UI, you need to select points that are as well
spread as possible for the computation to be well conditioned. Specifically, avoid
all-collinear points.

Correspondences The correspondences will be provided as an array of
CorrespondencePair, where each CorrespondencePair stores (x1, y1, z1), the
coordinates of the point in the first image and (x2, y2, z2), the coordinates in
the second. The test function testComputeHomographyPoster in a6 main.cpp

gives an example of how to use it.

Homography scaling A homography matrix is always defined up to a scaling
factor. This means that H and kH represent the same geometric transformation
for any non-zero scalar k. In this assignment, we will use a quick and dirty
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way to resolve the scale ambiguity and will assume that the bottom right
coefficient of the homography is 1. This could create some problems if the
true family of matrices H had a zero there, but we will ignore this and leave the
cleaner solution based on SVD as extra credit.

3 Write a function Matrix computeHomography(const

CorrespondencePair[4]) that takes a list of 4 point correspon-
dences and returns a 3 × 3 homography matrix that maps the first
point of each pair to the second point. That is, the homography maps
from the first image to the second image.

The details of the algorithm are exposed below.

Outline of Steps

(a) We would like to solve for the homography that maps 4 points in the first
image to the corresponding 4 points in the second image. In general, a
homography H correspondence equations can be written:

H

 x
y
1

 =

 a b c
d e f
g h 1

 x
y
1

 =

 w′x′

w′y′

w′

 (3)

Where the unknowns are a, b, c, d, e, f, g, h, and we know x, y and x′, y′ for
4 sets of points. w′ is not known, but can be deduced easily from other
quantities.

(b) You need to create a matrix A and vector B so that the 8 remaining
coefficients ( a, b, c, d, e, f, g, h) of the homography are encoded in an 8-
dimensional vector x that satisfies Ax = B.

You have two equations for each pair of corresponding points. To be clear,
the x vector in Ax = B is actually (a, b, c, d, e, f, g, h)T .

Do not get confused between the 3× 3 homography matrix and the 8× 8
matrix A for the linear system.

We recommend that you write a subroutine that fills in two rows of the
matrix and vector for a given correspondence pair, since the pattern is the
same for all pairs of points.

(c) Use the inverse() member function of the Matrix class to compute the
inverse of matrix A and multiply it with B. You can also have a look at the
documentation in Eigen and search for linear system solvers.

(d) Once you have solved the system, reshape your vector x into a 3× 3 matrix.
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Debugging Homographies and projective spaces are big scary things. Do not
try directly with the provided pairs of points. Use simpler cases. Think about
pairs of correspondences where you can compute the matrix easily by hand. Try
to infer the identity or a translation. You can also use testComputeHomography
in a6 main.cpp to help test your function, it should give you the coefficients
from testApplyHomography.

7 Bounding boxes

In the examples so far, the output image is the same size as one of the two
inputs. But for panorama stitching, we want to create a bigger output image
that encompasses all points from both images.

For this, we need to compute the size of the final output image. Additionally,
the final image might be extended towards the negative coordinates with respect
to the reference image. To handle this we will translate the reference, so that
the pixel coordinates in the final output start at (0, 0).

7.1 Transform a bounding box

To compute the required size for one image, we forward-transform its four corners
to the output space. We will represent the resulting required size as a bounding
box, encoded by its minimum and maximum x, y coordinates.

Be careful: whereas we usually need to consider the inverse warp
to go from output coordinates into source ones, here we need to do
the opposite and figure out where the bounds of the source project
into the output space.

4 Write a function BoundingBox computeTransformedBBox(int

imwidth, int imheight, Matrix H) that takes an image size and
a homography as input and returns the BoundingBox of the output
coordinates.

Use testComputeTransformedBBox in a6 main.cpp to help test your func-
tion. Hint: implementing the optional Image drawBoundingBox(const Image

&im, BoundingBox bbox) is useful for debugging bounding boxes.

7.2 Bounding box union

When stitching N images, the output is the union of the N bounding boxes.

5 Write a function BoundingBox bboxUnion(BoundingBox B1,

BoundingBox B2) that takes two bounding boxes and returns a bigger
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bounding box that tightly encompasses the union of the bounding
boxes.

Use testBBoxUnion in a6 main.cpp to help test your function.

7.3 Translation

After computing and merging the bounding boxes of the N images (including
that of the reference), we often will have the situation where the upper-left corner
of the bounding box has negative coordinates. This is illustrated in Fig. 2.

Figure 2: Bounding Boxes.

If the upper-left corner of the bounding box has negative coordinates, we
need to translate the coordinate system of the reference image to set this corner
to coordinates (0, 0). The translation vector is simply the negative of this
corner’s coordinates. You can then obtain the translation homography matrix
for translation by (txty)

T as:  1 0 tx
0 1 ty
0 0 1

 .

6 Write a function Matrix makeTranslation(BoundingBox B) that
takes a bounding box as input and returns a 3 × 3 matrix corre-
sponding to a translation that moves the upper left corner of the
bounding box to (0, 0).

Use testTranslate in a6 main.cpp to help test your function.
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7.4 Putting it all together

7 Write a function Image stitch(const Image &im1, const Image

&im2, const CorrespondencePair correspondences[4]) that takes
two images and their point correspondences and outputs a stitched
panorama in the coordinate system of the second (reference) image.

You first need to compute the homography between the two images. Then
compute the resulting bounding box and translation matrix. Create a new
black image of the size of the bounding box. Then use a combination of your
translation and homography matrix to composite both images into the output.
Be careful that you also need to transform the second (reference) image to take
the translation into account and that you need to combine the translation and
the homography for the first image. Use the right matrix product!

Use testStitchStata, testStitchMonu, and testStitchGuedelon in a6 main.cpp

to help test your function. See Fig. 3

7.5 6.8370 only (Or 5% Extra Credit for 6.8371): Speed
up Warping using Bounding Boxes

Accelerate the warping function by restricting the warping loop using the bound-
ing box of each image.

8 Implement void applyhomographyFast(const Image &source,

Image &out, Matrix &H, bool bilinear=false). Make sure you
see a speed-up of at least 5x for the green and poster example. Use
H.inverse() to calculate H−1 and clamp = true during interpola-
tion.

Use testApplyHomographyFast in a6 main.cpp to help test your function.

7.6 6.8370 only (Or 5% Extra Credit for 6.8371): Extra
Test Cases and Images

9 In homography extra tests.h, similar to testStitchStata, write
the following test cases:
testStitchScience(), to stitch science-1.png and science-2.png;
testStitchConvention(), to stitch convention-1.png and convention-2.png;
testStitchBoston1(), to stitch boston1-1.png and boston1-2.png.

Create output files science-stitch.png, and convention-stitch.png,
and boston1-stitch.png. Please include these images in the zip files,
where these three images are directly in the zip file (no extra folders).
Use the provided javascript UI to choose the 4 point pairs needed for
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(a) Stata Stitch (b) Monu Stitch

(c) Guedelon Stitch

Figure 3: Sample panoramas.
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stitching.

8 Extra Credit (up to 10% total)

• (5%): Implement a least square estimation of the homography for more
than four pairs of points.

• (5%): Apply homography for document rectification (take a picture of a
document with text, try to recify so that the text becomes straight and
horizontal lines).

• (5%): Estimate the homography with only two pairs of points, assuming
the homography is rotation-only.

• (5%) Use SVD to alleviate the assumption that the bottom right coefficient
of the homography matrix is 1.

• (5%): Improve the javascript UI.

9 Submission

Turn in your files to the online submission system and make sure all your files
are in the asst directory under the root of the zip file. If your code compiles
on the submission system, it is organized correctly. The submission system
will run code in your main function, but we will not use this code for grading.
The submission system should also show you the image your code writes to the
./Output directory

In the submission system, there will be a form in which you should answer
the following questions:

• How long did the assignment take? (in minutes)

• Potential issues with your solution and explanation of partial comple-
tion (for partial credit)

• Any extra credit you may have implemented and their function signa-
tures if applicable

• Collaboration acknowledgment (you must write your own code)

• What was most unclear/difficult?

• What was most exciting?
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