MIT EECS 6.8370/1: Assignment 7:

Harris Corners, Features and Automatic Panoramas

1

Due Wednesday November 6 at 9pm

Summary

Harris corner detection

Patch descriptor

Correspondences using nearest neighbors (NN) and the second NN test
RANSAC

Fully automatic panorama stitching of two images

Linear blending

Two-scale blending

Mini Planets

6.8370: N-image Panoramas

Make your own panoramal

This is not an easy assignment, but you have two weeks to complete it. Make
sure you start early!
There are many steps that all depend on the previous ones and it’s not always
trivial to debug intermediate results. We provided you with visualization helpers
which you can read about throughout this pdf or in panorama. cpp.

2 Previous Problem Set Code

This Problem Set uses code from Problem Set 6. Replace the functions in
homography . cpp with your own code (you can copy the entire file).

3 Harris Corner Detection

The Harris corner detector is founded on solid mathematical principles, but its
implementation looks like following a long cookbook recipe. Make sure you get
a good sense of where you're going and debug/check intermediate values.

3.1 Structure tensor

The Harris Corner detector is based on the structure tensor, which characterizes
local image variations. We will focus on greyscale corners and forget color
variations.

We start from the gradient of the luminance I, and I, along the = and y
directions (where subscripts denote derivatives). The structure tensor at pixel
(i,7) is:

MED=| Ladnan e | ®
Notice that M is a 2 x 2 symmetric matrix so we can only store the 3 unique
entries.

In order to compute M, we first extract the luminance of the image using the
lumiChromi function from Pset 1. Using a Gaussian with standard deviation
sigmaG, blur the luminance to control the scale at which corners are extracted.
A little bit of blur helps smooth things out and help extract stable mid-scale
corners. More advanced feature extraction uses different scales to add invariance
to image scaling.

Next, compute the luminance gradient along the x and y direction. We’ve
added the functions gradientX and gradientY in filtering.cpp for you. Call
these functions with the default value of clamp.

At this point we have the per-pixel I, and I, components needed for the
computation of (1). We will represent the tensor as an image the same size as
the input image, where the channels correspond to the 3 unique entries of (1),
e.g. the channels correspond to I, 1., I.1,, I,1,.

To complete the computation of the tensor, we weight each of the gradient
components of (1) by a weighting function. The final tensor is:

_ I LI,
M=) w [LI, I? (2)
where we skipped the pixel index for clarity. The weighting function does a
local weighted sum of the tensors at each pixel in order to take into account the
values of the neighbors. In our case, the weighting function is a Gaussian. To
achieve this last step, simply call the function gaussianBlur_separable with

the tensor computed above and standard deviation sigmaG+factorSigma (and
the default truncation value).

1 Write a function Image computeTensor(const Image &im, float
sigmaG=1, float factorSigma=4) in panorama.cpp that returns a
3D array (i.e. an Image) of the size of the input where the three
channels at each location x, y store the three values corresponding
to the I,I,, I,I,, and I,I, components of the final tensor (in this
order). Hint: don’t forget to blur as specified above.

Figure 1: To visualize the results, take a look at the resulting tensor Image.
These are our results for the Stata pair with RGB channels being xx, xy, yy,
using testComputeTensor (without normalizing).

3.2 Harris corners

Implementing the Harris corner detectors require a few steps, presented here in
order. Read the whole subsection before starting your implementation.

Corner response To extract the Harris corners from an image, we need to
measure the corner response from the structure tensor. The measure of corner
response is R = det(M) — k(trace(M))?, which compares whether the matrix
has two strong eigenvalues, indicative of strong variation in all directions (see
class notes).

2 Implement Image cornerResponse(const Image &im, float k=
0.15, float sigmaG=1, float factorSigma=4) in panorama.cpp
that computes the structure tensor of input image im by calling
computeTensor and returns a one-channel image the size of im con-
taining the per-pixel corner response.

Non-maximum suppression We get a strong corner response in a the neigh-
borhood of each corner. We need to only keep the strongest response in this

Figure 2: Our stata corner responses, normalized by the maximum values (as
done in testCornerResponse).

neighborhood. For this, we need to reject all pixels that are not a maxi-
mum in a window of maxiDiam. We've written a function maximum filter in
filtering.cpp that you might find useful - be sure to read and understand it
fully before incorporating.

Removing boundary corners Because we will eventually need to extract a
local patch around each corner, we can’t use corners that are too close to the
boundary of the image. Exclude all corners that are less than boundarySize
pixels away from any of the four image edges.

Putting it all together You are now ready to implement HarrisCorners. In
the end, your function should return a list of Points containing the coordinates
of each corner. For this assignment, we provide a class Point. Each point
corresponds to a Harris corner. Note that only pixels with positive corner
responses can be corners.

3 Implement a function vector<Point> HarrisCorners(const Image
&im, float k=0.15, float sigmaG=1, float factor=4, float
maxiDiam=7, float boundarySize=5) that returns a vector of 2D
Points.

Implement the algorithm following the steps outlined above.

Figure 3: Use the provided function visualizeCorners to verify your results
HarrisCorners. These are our results on Stata, testHarrisCorners.

More bells and whistles such as adaptive non-maximum suppression or
different luminance encoding might help, but this will be good enough for us.

4 Descriptor and correspondences

Descriptors characterize the local neighborhood of an interest point such as a
Harris corner so that we can match it with the same point in different images.

Points in two images are put in correspondence when their descriptors are
similar enough. We will call the combination of an interest point’s coordinates
and its descriptor a Feature, with corresponding class Feature implemented in
panorama. cpp.

Our descriptors will be all the pixels in a radiusDescriptor*2+1 by
radiusDescriptor*2+1 window around the associated interest point. That is,
they will be a small single-channel Image patch of size 9 x 9 when
radiusDescriptor=4, whose center pixel has the coordinates of the point.

We also want to address potential brightness and contrast variation between
images. For this, we subtract the mean of each patch, and divide the resulting
patch by its standard deviation. Note that, as a result of the offset and scale,

our descriptors will have negative numbers and might be greater than 1. We
have added the Image: :mean and Image: :var methods to simplify the process.

4.1 Descriptors

4 Write a subroutine Image descriptor(const Image &im, const
Point &p, float radiusDescriptor=4) that extracts a single de-
scriptor around interest Point P as described above. Here, im is a
single-channel Image (since we will be computing descriptors based
on the luminance alone). Hint: don’t forget to offset and scale as
described above.

4.2 Features

As mentioned above, we define a Feature as a pair (p,d) where p is a Point
and d is the corresponding Descriptor encoded as a single-channel Image patch.
See our Feature class in panorama.h for more information.

5 Write a function vector<Feature> computeFeatures(const Image
&im, const vector<Point> &cornersL, float
sigmaBlurDescriptor=0.5, float radiusDescriptor=4) that takes
as input a list cornerL of Harris corners and computes the associated
features. The function should return a vector of features the same
size as the number of input corners.

As noted above, the description will be computed on a single-channel
image, to do so, extract the luminance from the input image im, and
apply Gaussian blur with standard deviation sigmaBlurDescriptor
(this avoids aliasing issues). Compute the descriptions using this
blurred luminance.

We provided you with a function visualizeFeatures that overlays the
descriptors at the location of their interest points, with positive values in green
and negative values in red. The normalization by the standard deviation makes
low-contrast patches harder to recognize, but high-contrast ones should be easy
to debug, e.g. around the tree or other strong corners.

4.3 Best match and 2nd best match test

Now that we have code that can compute a list of features for each image, we
want to find correspondence from features in one image to those in a second one.
We will use our descriptors and the Ly, norm to compare pairs of features. The
procedure is not symmetric (we match from the first to the second image). We
will use the FeatureCorrespondence class, declared in panorama.h.

Let us first implement the Euclidean distance between features:

Figure 4: Visualizing features, testComputeFeatures in a7_main.cpp.

6 Implement float 12Features(const Feature &f1, const Feature
&£2) in panorama.cpp that returns the squared distances between
the feature descriptors. The squared distance between two descriptors
is the sum of squared differences between individual values.

Second-best test If you remember the discussion in class, for our matching
procedure, not only do we consider the most similar descriptor, but also the
second best. If the ratio of distances of the second best to the best is less than
threshold, we reject the match because it is too ambiguous: the second best
match is almost as good as the best one. A word of caution be consistent in
your use of distance and squared-distance; you can compute everything with just
the squared distance (it’s faster, no need for sqrt) but then you need to use the
square of the threshold.

7 Write a function vector<FeatureCorrespondence>
findCorrespondences (const vector<Feature> &listFeaturesl,
const vector<Feature> &listFeatures2, float threshold) that
computes, for each feature in listFeaturesl, the best match in
listFeatures2, but rejects matches when they fail the second-best

comparison. As usual, a helper function could prove useful. The
search for the minimum (squared) distance can be brute force.

Your function findCorrespondences should return a vector of
FeatureCorrespondence (pairs of 2D points) corresponding to the matching
interest points that passed the test. The size of this list should be at most that
of listFeatures1, but is typically much smaller.

Figure 5: Use the provided visualizePairs to debug your matches. Note that
not all correspondences are going to be perfect. We will reject outliers in the
next section using RANSAC. But a decent fraction should be coherent, as shown
here with testFindCorrespondences.

5 RANSAC

So far, we’ve dealt with the tedious engineering of feature matching. Now comes
the apotheosis of automatic panorama stitching, the elegant yet brute force
RANSAC algorithm (RANdom Sample Consensus). It is a powerful algorithm
to fit low-order models in the presence of outliers. Read the whole section and
check the slides to make sure you understand the algorithm before starting your
implementation. If you have digested its essence, RANSAC is a trivial algorithm
to implement. But start on the wrong foot and it might be a path of pain and
misery.

In our case, we want to fit a homography that maps the list of feature
points from one image to the corresponding ones in a second image, where
correspondences are provided by the above findCorrespondences function.
Unfortunately, a number of these correspondences might be utterly wrong, and
we need to be robust to such so-called outliers. For this, RANSAC uses a
probabilistic strategy and tries many possibilities based on a small number of
correspondences, hoping that none of them is an outlier. By trying enough, we
can increase the probability of getting an attempt that is free of outliers. Success
is estimated by counting how many pairs of corresponding points are explained
by an attempt. Our RANSAC function will estimate the best homography from a
listOfCorrespondences.

Random correspondences For each RANSAC iteration, pick four random
pairs in listOfCorrespondences. The function vector<FeatureCorrespondence>
sampleFeatureCorrespondences (vector<FeatureCorrespondence> list) can
help you randomly shuffle the vector, and you can then use the first four entries
as the four random pairs.

Converting correspondences Given four pairs of points computed above,

you should compute a homography using the functions from problem set 6.

In that problem set you used the class CorrespondencePair to specify the

pairs of points. We supply you with a function vector<CorrespondencePair>
getListOfPairs(const vector<FeatureCorrespondence> &listOfCorrespondences)
to convert FeatureCorrespondence to CorrespondencePair, this function ex-

pects a list of at least 4 correspondences and returns a vector of Corresponden-

cePair. To call your computeHomography the method

vector<CorrespondencePair>: :data() might be helpful.

Singular linear system In some cases, the four pairs might result in a singular
system for the homography. Our first solution was to test the determinant of
the system and return the identity matrix when things go wrong. It’s not the
cleanest solution in general, but RANSAC will have no problem dealing with it
and rejecting this homography, so why not? Use the determinant method from
Eigen’s Matrix class to achieve this.

Scoring the fit We need to evaluate how good a solution this homography
might be. This is done by counting the number of inliers. If the number of
inliers of the current homography is greater than the best one so far, keep the
homography and update the best number of inliers.

8.a Implement vector<bool> inliers(Matrix H, const vector
<FeatureCorrespondence> &list0OfCorrespondences, float
epsilon=4). The function should return a list of Booleans of the
same length as 1ist0fCorrespondences that indicates whether each

correspondence pair is an inlier, i.e., is well modeled by the homog-
raphy. For this, use the test ||p’ — Hp|| <epsilon. Where p is the
location of feature 1 and p’ is the location of feature 2. That is, the
pair p,p’ is said to be an inlier with respect to a homography H if
[lp’ — Hp|| <epsilon (]| - || indicates L2 norm).

8.b Write a function Matrix RANSAC(const vector
<FeatureCorrespondence> & listOfCorrespondences, int
Niter=200, float epsilon=4) that takes a list of correspondences
and returns a homography that best transforms the first member of
each pair into the second one. Niter is the maximum number of
RANSAC iterations (random attempts) and epsilon is the precision
(in pixels) for the definition of an outlier. vs. inlier.

You can use the provided function visualizePairsWithInliers to see which
correspondences are considered inliers. It outputs an image similar to the output
of visualizePairs except that inliers are in green and outliers are in red.

You can also use the provided visualizeReprojection, which shows where
the homography reprojects features points. For inlier, detected corners are in
green, while those re-projected from the other image are in red. For outliers, the
local corners are yellow and the re-projected ones are blue. Our reproductions
for Stata are below. The result below further emphasizes that RANSAC is
probabilistic: the set of inliers is not exactly the same as above.

6 Automatic panorama stitching

9 Write a function Image autostitch(const Image &iml, const
Image &im2, float blurDescriptor, float radiusDescriptor)
that takes two images as input and automatically outputs a panorama
image where the first image is warped into the domain of the sec-
ond one. You can and should call your problem set 6 functions
in homography.cpp. You should get a similar-ish result to the last
assignment (but automatically).

Try it on the Stata, Boston-skyline and at least another pair of images.

10

(a) Inliers Stata-1 (b) Inliers Stata-2

(c) Inliers

Figure 6: RANSAC output of testRANSAC.

11

7 Blending

So far, we have re-projected input images into a common domain without paying
much attention to problems at the boundaries. Our goal in this section is to
mask the transition between images.

7.1 Linear blending

We will first implement a simple smooth transition between images. For this,
the final output will be a weighted average of the reprojected inputs, where the
weights decrease from 1 at the center of an image to 0 at the edges.

Weights are not easy to compute in the output domain because of the
reprojection: it is harder to tell how far a pixel is from an image’s boundary.
Instead, we will compute the weights in the domain of the source image where it
is trivial to tell how far a pixel is from the image boundary.

We will use piecewise linear weights in the source domain. The weights will
be given by a separable function, which means that it is the product of a function
only in z and another function only in y. Each of these two functions will be
piece-wise linear with a value of 1.0 in the center and 0.0 at the edges. For
images with even width or height, the center doesn’t have to be at a pixel (i.e.
if the image has width 2, the center should be at 0.5).

10.a Implement Image blendingweight (int imwidth, int imheight),
which returns a single-channel Image of weights as described above.

We will now re-implement various functions from the last problem set with
blending. Instead of directly copying the source values to the output we will add
them weighted by the blend weight.

10.b Implement void applyhomographyBlend(const Image &source,
const Image &weight, Image &out, Matrix &H, bool bilinear),
which is similar to applyHomography (or applyHomographyFast).
But instead of directly writing the pixels of the input image to the
output image, this function should add the pixels of the input image
(source) times the weight to the output image.

10.c Implement Image stitchLinearBlending(const Image &iml, consty
Image &im2, const Image &weightl, const Image &weight2,
const Matrix &H), which stitches two images using the given weights.
You can use applyhomographyBlend to help you with this. Note that
stitch should not do any normalization — if the two weights don’t add
up to 1 at some pixel, that’s ok.

See Figure 7 for our weight map for the poster image, and our applyhomog-
raphyBlend applied to the green/poster combo with a constant weight of 0.5 for
every pixel of the poster.

12

Figure 7: Poster weight obtained from calling blendingweight and output from
testApplyHomographyBlend with constant weight of 0.5.

7.2 Better Blending

The problem with linear blending is that the resulting image can be blurry at the
transition or exhibit ghosts when features are not exactly matched. To fix this,
we will use a two-scale approach that uses smooth weights for the low frequencies
and abrupt weights for the high frequencies.

We will achieve this by first decomposing the source image into low-frequency
and high-frequency components. As we have done in the past, applying a
Gaussian blur is sufficient to obtain the low-frequency, while the the high-
frequency can be obtained by subtracting the low from the source.

Now that we have the individual components, we want to weight them
accordingly. For the low frequencies use the same smooth weights we have
used so far, e.g., blendingweight and combine them linearly. For the high-
frequencies, use abrupt weights that only keep the high frequency of the image
with the highest weight. That is, after warping the smooth weights of each image
to the output domain, set the highest of the two weights to one and the lowest
to zero. Linearly blend the images with these weights to obtain the blended
high-frequency component. Finally compute the output image by adding the
resulting low- and high-frequencies.

10.d Implement stitchBlending(const Image &iml, const Image &im2,
Matrix H, BlendType blend). Here BlendType is an enumerate tak-
ing the following values BLEND_NONE, BLEND_LINEAR, BLEND_2LAYER.

For BLEND_NONE the function should perform normal stitching (using
im2 as reference, as was done in the previous problem set).

For BLEND_LINEAR stitch the two images using linear blending from
above. Make sure you figure out some way of keeping track of the
sum of the weights at each output pixel since (unlike above) we need
the output of this function to be normalized.

13

Figure 8: Our results for the three blend types BLEND_NONE, BLEND_LINEAR,
BLEND_2LAYER for testStitchBlendStata. Zoom in on the trees on your pdf
viewer to see the difference between the second and third image.

Figure 9: Output of testAutoStitchNBoston for linear and 2-scale blending.
You can see more problems in the linear blending, as expected from lecture
notes.

For BLEND_2LAYER use 2-scale blending described above. For the
Gaussian filter use a spatial sigma of 2 pixels (and default truncate/-
clamp parameters). You might find the function scaledecomp(const
Image &im, float sigma = 2.0) useful. Hint: consider calling
stitchBlending with various inputs to help with your implementa-
tion.

We now have all the pieces to obtain a fully automatic panorama stitching
with blending! See it in action in Figure 9 for the Boston sequence (since we all
know Boston skyline examples are cooler).

10.e Implement Image autostitch(Image &iml, Image &im2, BlendType
blend, float blurDescriptor=0.5, float radiusDescriptor=4),
which is the same as the first part of the pset’s autostitch, except
it calls the stitch implementation above, with the fourth parameter
blend. In other words, it computes features, finds correspondences,

14

finds the homography (via RANSAC) before doing the stitch with the
passed in blend type.

8 Mini planet

Assume you’ve been given a panorama image. Use the stereographic projection to
yield the popular mini planet view. See e.g. http://www.miniplanets.co.uk/
and http://en.wikipedia.org/wiki/Stereographic_projection.

11 Implement Image pano2planet(const Image &pano,

int newImSize, bool clamp=true). Make a new image of square
size (newImSize), and for each pixel (x, y) in the new image, compute
the polar coordinates (angle, radius) assuming that the center is
the floating point center as in blendingweights. Map the bottom of
your input panorama to the center of the the new image and the top
to a radius corresponding to the distance between the center and the
right edge (in the square output).

The left and right sides of the input panorama should be mapped to
an angle of 0, along the right horizontal axis in the new image with
increasing (counter-clockwise) angle in the output corresponding to
sweeping from left to right of the input panorama. Assume standard
polar coordinate conventions (angle is 0 along right horizontal axis
and 7 is along the top vertical axis). Use interpolateLin to copy
pixels from panorama to planet image. Hint: see C++’s atan2.

See the left side Figure 10 for a winter panorama of Boston, and the resulting
planet. Note that there is a rough line in the middle of the sky. This is because
the panorama is not really 360 degrees. By contrast, the Mars panorama on the
right side of Figure 10 is 360, and we have a much smoother planet result

9 6.8370: Stitch N Images (6.8371: Extra Credit 5%)

In this section you’re going to compose a larger panorama using N images!
Finally, some really fun stuff!

12.a Implement vector<Matrix> sequenceHs(const vector<Image> &ims
float blurDescriptor=0.5, float radiusDescriptor=4); which
computes a sequence of N-1 homographies for N images. H[i] should
take ims[i] to ims[i+1]. Use the same pipeline we have used for
individual homographies.

12.b Implement vector<Matrix> stackHomographies(const
vector<Matrix> &Hs, int refIndex);. This takes the N-1 homo-
graphies from the previous function, and translates them into N homo-

15

http://www.miniplanets.co.uk/
http://en.wikipedia.org/wiki/Stereographic_projection

Figure 10: Input panoramas (top) and resulting mini-planets (bottom) for a
Boston sequence (left) and a Mars sequence (right). Mars pano credit: http:

//mars

12.c

12.d

.nasa.gov/mer/gallery/panoramas/spirit/2005.html)

graphies for the N images. H[i] takes ims[i] to image ims [refIndex].
Therefore, H[refIndex] should be identity. Note that this requires
some chaining of pairwise homographies to get the global homogra-
phies. Note that a different procedure is needed for images before and
after the reference image.

Implement BoundingBox bboxN(const vector<Matrix> &Hs, const
vector<Image> &ims);, which takes in N homographies and N im-
ages, and computes the overall bounding box.

Implement Image autostitchN(const vector<Image> &ims, int
refIndex, float blurDescriptor=0.5, float
radiusDescriptor=4) ;, which computes the sequence of homogra-
phies using sequenceHs then propagates them using stackHomographies
function to the specified reference image refIndex. Then computes
the overall bounding box using bboxN and the translation to make
the box start at (0,0). Finally apply the homographies to all images
to get the output panorama. Use linear blending. You can and
should call your problem set 6 functions in homography . cpp.

16

http://mars.nasa.gov/mer/gallery/panoramas/spirit/2005.html
http://mars.nasa.gov/mer/gallery/panoramas/spirit/2005.html

Figure 11: Here is testAutoStitchNBoston and testAutoStitchNCastle in
action.

17

10 Make your own panorama

Capture your own sequence of images and run it through your automatic algo-
rithm. Two images for 6.8371, and at least three images (using N-stitching) for
6.8370.

Make sure you keep the camera horizontal enough because our naive descrip-
tors are not invariant to rotation. Similarly, don’t use a lens that is too wide
angle (Don’t push below a 35mm equivalent of 24mm). Your total panorama
shouldn’t be too wide angle (don’t go too close to 180 degrees yet) because
the distortions on the periphery would lead to a very distorted and ginormous
output. Some of the provided sequences are already pushing it. Finally, recall
that you should rotate around the center of projection as much as possible in
order to avoid parallax errors. This is especially important when your scene has
nearby objects.

If you need to convert images to .png, one online tool that appears to work
is http://www.coolutils.com/online/image-converter/. Also, you might
have to downsize your images since overly large images will take a long time to
compute.

13.a Turn in both your source images and your results in the folder my_pano
of your submission zip file. Name your source images source_1.png,
source_2.png... and name your final image mypano.png.

11 Extra credits (10% max)

For any extra credit you attempt (5% each), please write a new test function
in your main file, and include the name of the test function in the submission
questionnaire. This is a requirement for getting the extra credit.

Adaptive non-maximum suppression. See, for example, Section 3 in
“Multi-Image Matching using Multi-Scale Oriented Patche“, Brown et al 2005.

Wavelet or multi-scale descriptor.
Rotation or scale invariance for the descriptor.

Full SIFT. See “Object Recognition from Local Scale-Invariant Features®,
Lowe 1999.

Evaluation of repeatability of RANSAC.
Least square refinement of homography at the end of RANSAC

Using iterative reweighted least square for handling outliers instead
of RANSAC.

18

http://www.coolutils.com/online/image-converter/

Bundle adjustment See, for example, Section 4 in ”Recognising Panoramas”,
Brown and Lowe 2003.

Automatically crop margins (5%) It’s not trivial, but not too hard. Find
a reasonable way to crop out the black margins automatically. Be careful not to
crop too much from the Image.

Cylindrical reprojection (5%) We can reproject our panorama onto a
virtual cylinder. This is particularly useful when the field of view becomes larger.
This is not a difficult task per say, but it requires you to keep track of a number
of coordinate systems and to perform the appropriate conversions. For this, it is
best to think of the problem in terms of 3D projection onto planes vs. cylinders.

At the end of the day, we will start with cylindrical coordinates, turn them
into 3D points/rays, and reproject them onto planar coordinate systems to
lookup pixel values in the original images.

The projection matrix for a planar image when the optical axis is along the
z coordinates is

K =

S O~

0
0
1

O~ O

where f is the normalized focal length, corresponding to a sensor of width
1.0.

This projects 3D points into 2D homogenous coordinates, which need to be
divided by the 3rd component to yield Euclidean coordinates. The coordinates
in the sensor plane are assumed to go from -0.5 to 0.5 for the longer dimension.

We then need to convert these normalized coordinates into [0..width, 0..height].
Define size=max (height, width), then the normalized coordinates

size 0 width/2
S = 0 size height/2
0 0 1

In the end, for the reference image, we have

We also know that for another image
P2iD _ Hv"ef—m'P?TLE)f

Now that we have equations for planar projections, we compute the cylindrical
projection of one image. We interpret the output pixel coordinates as cylindrical
coordinates y,0 (after potential scaling and translation). y is the vertical
dimension of the cylinder and 6 the angle in radian. We convert these into a
3D point Ps;p, which we reproject into the source image where we perform a
bilinear reconstruction.

19

We encourage to debug this using manually-set bounding boxes (e.g. —m/2..7/2
in 0, and a scaling factor that maps preserves the height of the reference image).

You can then, if you want adapt your bounding box computation. Note that
cylindrical projections are not convex, and taking the projection of the 4 corners
does not bound the projection. You can ignore this and accept some cropping
or sample the image boundary more finely.

Horizon correction for cylindrical reprojection (5%) The y axis of the
reference image is not necessarily the vertical axis of the world. This might
result in some distorted reproduction where the horizon is not horizontal.

You can address this by fitting a plane onto the centers of the panorama
source images in the 3D coordinate system of the reference image.

12 Submission

Turn in your files to the online submission system and make sure all your files
are in the asst directory under the root of the zip file. If your code compiles
on the submission system, it is organized correctly. The submission system
will run code in your main function, but we will not use this code for grading.
The submission system should also show you the image your code writes to the
./0utput directory

In the submission system, there will be a form in which you should answer
the following questions:

e How long did the assignment take? (in minutes)

e Potential issues with your solution and explanation of partial comple-
tion (for partial credit)

e Any extra credit you may have implemented and their function signa-
tures if applicable

e Collaboration acknowledgment (you must write your own code)
e What was most unclear/difficult?

e What was most exciting?

20

	Summary
	Previous Problem Set Code
	Harris Corner Detection
	Structure tensor
	Harris corners

	Descriptor and correspondences
	Descriptors
	Features
	Best match and 2nd best match test

	RANSAC
	Automatic panorama stitching
	Blending
	Linear blending
	Better Blending

	Mini planet
	6.8370: Stitch N Images (6.8371: Extra Credit 5%)
	Make your own panorama
	Extra credits (10% max)
	Submission

